2020
September
Standard

Deformed disk around the triple star system GW Orionis

Our Solar System is remarkably flat, because all the planets orbit in the same plane. But that’s not always the case, especially not for planet-forming disks around systems made up of multiple stars. GW Orionis, for example, which is located more than 1300 light-years away in the constellation Orion, has three stars and a deformed, broken-apart disk surrounding these stars.

“Our images show an extreme case where the disk is not flat at all, but is deformed and has a slanted ring that has detached from the disk,” says Stefan Kraus, professor for astrophysics at the University of Exeter, who led a study published in the journal Science. The oblique ring is located in the inner part of the disk close to the three stars.

The new study shows that this inner ring contains 30 Earth masses of dust, which might be enough to form planets. “All planets formed within the inclined ring will orbit the star on very oblique orbits. We predict that many planets on oblique, widely separated orbits will be detected in future observation campaigns, for example, with the ELT,” says team member Alexander Kreplin of the University of Exeter. Since more than half of the stars in the sky are born with one or more companions, this produces an exciting prospect: there might be an unknown population of exoplanets that orbit their stars on highly inclined and widely separated orbits.

Read more

The end